click by NT on 3/23/15

MEMORANDUM

TO:

Mr. Addison Rice

Anderson, Mulholland and Associates

DATE: March 20, 2015

FROM: R. Infante

FILE: 1503058

RE:

Data Validation

Air samples

SDG: 1503058C/1503058F/1503058H

SUMMARY

Full validation was performed on the data for several gas samples analyzed for 2-propanol and methanol

organic compounds by method Compendium Method TO-15: Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999 and methane by ASTM method D-1946-modified. The samples were collected at the Bristol Myer Squib, Humacao, PR site on March 02, 2015 and submitted to Eurofins Air Toxics, Inc. of Folson, California that analyzed and reported the results under delivery groups (SDG) 1503058C/1503058F/1503058H.

The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: Compendium Method TO-15. Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999; Validating Air Samples. Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15, (SOP # HW-31. Revision #4. October, 2006; and the QC criteria of the ASTM method D-1946-modified. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

In general the data is valid as reported and may be used for decision making purposes. The data results are acceptable for use.

SAMPLES

The samples included in the review are listed below

Client Sample ID	Lab. Sample ID	Collected Date	Matrix	Analysis
B6-AA-2	1503058C-01A	03/02/2015	Air	Methanol
B6-1IA	1503058C-02A	03/02/2015	Air	Methanol
B6-2IA	1503058C-03A	03/02/2015	Air	Methanol
B6-2IA Dup	1503058C-04A	03/02/2015	Air	Methanol

Client Sample ID	Lab. Sample ID	Collected Date	Matrix	Analysis
B6-1SS	1503058C-05A	03/02/2015	Air	Methanol
B6-2SS	1503058C-06A	03/02/2015	Air	Methanol
B6-2SS Dup	1503058C-07A	03/02/2015	Air	Methanol
B6-AA-2	1503058H-01A	03/02/2015	Air	2-Propanol
B6-1IA	1503058H-02A	03/02/2015	Air	2-Propanol
B6-2IA	1503058H-03A	03/02/2015	Air	2-Propanol
B6-2IA Dup	1503058H-04A	03/02/2015	Air	2-Propanol
B6-AA-2	1503058F-01A	03/02/2015	Air	Methane
B6-1IA	1503058F-02A	03/02/2015	Air	Methane
B6-2IA	1503058F-03A	03/02/2015	Air	Methane
B6-2IA Dup	1503058F-04A	03/02/2015	Air	Methane
B6-1SS	1503058F-05A	03/02/2015	Air	Methane
B6-2SS	1503058F-06A	03/02/2015	Air	Methane
B6-2SS Dup	1503058F-07A	03/02/2015	Air	Methane

REVIEW ELEMENTS

Sample data were reviewed for the following parameters, where applicable to the method

- o Agreement of analysis conducted with chain of custody (COC) form
- o Holding time and sample preservation
- o Gas chromatography/mass spectrometry (GC/MS) tunes
- o Initial and continuing calibrations
- Method blanks/trip blanks/field blank
- o Canister cleaning certification criteria
- Surrogate spike recovery
- o Internal standard performance and retention times
- o Field duplicate results
- Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- o Quantitation limits and sample results

DISCUSSION

Agreement of Analysis Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody form.

Holding Times and Sample Preservation

Sample preservation was acceptable.

Samples analyzed within method recommended holding time.

GC/MS Tunes

The frequency and abundance of bromofluorobenzene (BFB) tunes were within the QC acceptance criteria. All samples were analyzed within the tuning criteria associated with the method.

Initial and Continuing Calibrations

VOCs - Methanol and 2-Propanol (Method TO-15)

The percent relative standard deviations (%RSDs) and response factors (RFs) of all target analytes were within the QC acceptance criteria in the initial calibration. Correlation coefficients (r²) of target analytes were within the QC acceptance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard.

Methane by ASTM method D-1946 (modified)

Initial and continuing calibrations meet method specific requirements. Initial calibration retention times meet method specific requirements.

Method Blank/Trip Blank/Field Blank

Target analytes were not detected in laboratory method blanks.

Summa canister met cleaning certification criteria.

No trip/field blank analyzed with this data package.

Surrogate Spike Recovery

The surrogate recoveries as per method TO-15 were within the laboratory QC acceptance limits in all samples analyzed. ASTM method for methane does not require surrogate standards.

Internal Standard Performance

VOCs - Methanol and 2-Propanol(TQ-15)

Samples were spiked with the method specified internal standard. Internal standard are performance and retention times met the QC acceptance criteria in all sample analyses and calibration standards.

Laboratory/Field Duplicate Results

Field/laboratory duplicates were analyzed as part of this data set. Target analytes meet the RPD performance criteria of +25% for analytes $5\times SQL$.

LCS/LCSD Results

VOCs and Methane

LCS/LCSD (blank spike) were analyzed by the laboratory associated with this data package. Recoveries and RPD within laboratory control limits.

Quantitation Limits and Sample Results

Dilutions were performed on TO-15 samples (see worksheet).

Calculations were spot checked.

Certification

The following samples 1503058C-01A; 1503058C-02A; 1503058C-03A; 1503058C-04A; 1503058C-05A; 1503058C-06A; 1503058C-07A; 1503058F-01A; 1503058F-02A; 1503058F-03A; 1503058F-04A; 1503058F-05A; 1503058F-06A; 1503058F-07A; 1503058H-01A; 1503058H-02A; 1503058H-03A; and 1503058H-04A were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document. The results are valid. Some of the results were qualified.

Rafael Infante

Chemist License 1888

Client Sample ID: B6-AA-2 Lab ID#: 1503058C-01A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14030505 1.37	Date of Collection: 3/2/15 9:38:00 Date of Analysis: 3/5/15 02:43 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	68	Not Detected	90	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: B6-1IA Lab ID#: 1503058C-02A

EPA METHOD TO-15 GC/MS

File Name:	14030506	Date of Collection: 3/2/15 12:05:		
Dil. Factor:	1.56	Date of Analysis: 3/5/15 03:06 Pl		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Methanol	78	Not Detected	100	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: B6-2IA Lab ID#: 1503058C-03A

EPA METHOD TO-15 GC/MS

File Name: 14030507 Dil. Factor: 1.59		Date of Collection: 3/2/15 12:08:00 PM Date of Analysis: 3/5/15 04:08 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	80	Not Detected	100	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: B6-2IADup Lab ID#: 1503058C-04A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14030508 1.63	Date of Collection: 3/2/15 12:08 Date of Analysis: 3/5/15 04:59 P		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	82	Not Detected	110	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: B6-1SS Lab ID#: 1503058C-05A

EPA METHOD TO-15 GC/MS

File Name:	14030509	Date of Collection: 3/2/15 4:35:00		
Dil. Factor:	2.35	Date of Analysis: 3/5/15 05:27 PI		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Methanol	120	Not Detected	150	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: B6-2SS Lab ID#: 1503058C-06A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	143300.0		Date of Collection: 3/2/15 3:08:00 P Date of Analysis: 3/5/15 06:20 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	110	Not Detected	150	Not Detected

Cumanatan	W.D.,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: B6-2SSDup Lab ID#: 1503058C-07A

EPA METHOD TO-15 GC/MS

File Name:	14030511		V15 3:08:00 PM	
Dil. Factor:	2.43		I5 06:40 PM	
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Methanol	120	Not Detected	160	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	102	70-130	

discurofins		Air Toxics
-------------	--	------------

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnity Air Toxics Limited against any claim, demand, or action, of any kind, related to the

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page of I poliection, handling, or shipping of samples, D.O.T. Hotline (800) 467-4922 Project Manager Late Use Only Project Info: **Turn Around** Time: Pressurized by ☐ Normal Date: Rush Project # State LY Zip 10577 Pressurization Gas. 914-391-04008x Project Name Canister Pressure/Vacuum Date Time Let ID Field Sample I.D. (Location) Can # of Collection of Collection **Analyses Requested** Initial Final see below 208 - 2IADUD 208 1635 1508 B6-255000 30 1508 Hold For Analysia 30" Relinquished by: (signature) Date/Time Recoved by: (signature) Date/Time Analy de fer: Acetone, Benzare, 15:1100 1201 34.15 Relinguished by: (signature) Date/Time Received by: (signature) Ibenzene, Isoprepy Alcold, Date/Time Relinquished by: (signature) Date/Time Received by: (signature) Condition Custogy Seals Intact? Work Order # lemo (°C)... 773032321463 A75001 Yes No None 1503058

Client Sample ID: B6-AA-2 Lab ID#: 1503058H-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p030907	Date of Collection: 3/2/15 9:		
Dil. Factor:	1.37	Date of Analysis: 3/9/15 12:2		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
2-Propanol	2.7	0.36 J	6.7	0.90 J

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: B6-1IA Lab ID#: 1503058H-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p030910 10.4	Date of Collection: 3/2/15 12:05 Date of Analysis: 3/9/15 01:31 F		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	21	1600	51	3900

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: B6-2IA Lab ID#: 1503058H-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p030908 6.37	Date of Collection: 3/2/15 12:08: Date of Analysis: 3/9/15 12:43 P		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	13	810	31	2000

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: B6-2IADup Lab ID#: 1503058H-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p030909 6.53	Date of Collection: 3/2/15 12:0 Date of Analysis: 3/9/15 01:07		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	13	870	32	2100

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	104	70-130

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page 1 of 1

Project Manager Terry Taylor Project Info:						, 4022	Turn	Around	Lab Use	Only	
Collected I	collected by: (Print and Sign) Terry Taylor			•			Time:		Pressurized by:		
Company	AM A± Email			P.O. #	· · ·	-	☐ Normal		Date:		
Address 2	760 Westchale Autoity Purchase	State UY Zip KO	577	Projec	t#		P P R		Pressurization Gas:		Gas:
	14-391-0400ax			Projec	t Name			day specify		N ₂ H	u (1) 10 11 11 11 11 11 11 11 11 11 11 11 11
			D	ate	Time			Canis	ter Pres	sure/Vac	uum
Lab IID.	Field Sample I.D. (Location)	Can #	of Co	llection	of Collection	Analyses Reque	sted	Initial	Final	Receipt	Final
GIA	B6-AA-2	34188	3/2	/15	0938	see below		30"	0"		
CAA	B6-11A	94305	3/2	/15	1205			30"			
CBA	B6-21 A	34011	3/2	/15	1208			30"	6"		
CUL	B6-ZIADUP	35132	3/2	/15	1208			30	6"		
	B6-155	36415	3/2	/15	1635			30"	54		
	B6-255	33398	3/2	15	1508			30"	4"		
	B6-255000	12379	3/2	15	1508	4		30	6"		
	B6-AA-3'	35142	3/3	,	-10000000000000000000000000000000000000	Hold For Anal	VSIA	30"	5"		
7	7		,								
	_ 1	100		j.							21/20/20/20
Relinquish	ed by: signature) Date/Time	Recorded by: (signat		Date/Tim		Notes:	0		1	0	
Relinguish	3/3/15:1100 d by: (signature) Date/Time	Received by: (signate	<u>82</u>	3° U- Date/Tim		Analy 20	ter	. Ace	tone	, isen	sere,
	y sur line	viocerved by: (signal	ui o) i	Jale/ HH		Elly be	n tev	18, 1 so	buchi	Alcol	-cl,
Relinquished by: (signature) Date/Time Received by: (signature)			Date/Time Yvlene av		entene Isoprepy Alcold, not, MiBK, Tolvene, with and. Report to			+6			
	Shipper Name Air Bill #	#	mp (°	m).	ani.						
Lab Use 1			100	4 /	Condition	Custody Se			divide a		
Only	Telex 77303232	1763 /	A		Erod	Yea N	o (Ne		720	3058	
	,										

Client Sample ID: B6-AA-2 Lab ID#: 1503058F-01A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9030505 1.37		tion: 3/2/15 9:38:00 AM sis: 3/5/15 01:37 PM
Compound		Rpt. Limit (%)	Amount (%)
Methane		0.00014	0.00015

Client Sample ID: B6-1IA Lab ID#: 1503058F-02A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9030506	Date of Collec	tion: 3/2/15 12:05:00 PM
Dil. Factor:	1.56		sis: <i>3/5</i> /15 01:59 PM
		Rpt Limit	Amount
Compound		(%)	(%)
Methane		0.00016	0.00017

Client Sample ID: B6-2IA Lab ID#: 1503058F-03A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9030507 1.59		tion: 3/2/15 12:08:00 PM sis: 3/5/15 02:39 PM
Compound		Rpt. Limit (%)	Amount (%)
Methane		0.00016	0.00018

Client Sample ID: B6-2IADup Lab ID#: 1503058F-04A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9030508 1.63		tion: 3/2/15 12:08:00 PM sis: 3/5/15 04:00 PM
_		Rpt. Limit	Amount
Compound		(%)	(%)
Methane		0.00016	0.00025

Client Sample ID: B6-1SS Lab ID#: 1503058F-05A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9030509	Date of Collec	tion: 3/2/15 4:35:00 PM
Dil. Factor:	2.35	Date of Analys	sis: 3/5/15 04:33 PM
		Rpt. Limit	Amount
Compound		(%)	(%)
Methane		0.00024	0.00014 J

J = Estimated value.

Client Sample ID: B6-2SS Lab ID#: 1503058F-06A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	9030510 2.24		tion: 3/2/15 3:08:00 PM sis: 3/5/15 05:01 PM
Compound		Rpt. Limit (%)	Amount (%)
Methane		0.00022	0.00017 J

J = Estimated value.

Client Sample ID: B6-2SSDup Lab ID#: 1503058F-07A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 9030511 Date of Collection: 3/2/15 3:08:00 PM
Dil. Factor: 2.43 Date of Analysis: 3/5/15 05:52 PM

Rpt. Limit Amount
Compound (%) (%)

Methane 0.00024 0.00016 J

J = Estimated value.

	eurofins	I	Air Toxics
--	----------	---	------------

Project Manager lerry Toylor		Project Info:			Turn Around		ee Crig	
Collected by: (Print and Sign) Terry Tentor			•			Time:	Pres	aurized by:
Company AM A+		4	P.O. #_	*	***************************************	☐ Norma	*304.00	n istija s
Address 2760 West chale Autity Richese State	OLY ZIP LOS	233	Project	t#	*	Rush		surization Gas:
Phone 914-3-1201-04008x		T T	Project	t Name	*	3da		N, He
Lab ED. Field Sample I.D. (Location)	Can#	Dat of Colle		Time of Collection	Analyses Reques		anister Pre	essure/Vacuum
86-AA-2	34188	3/2/		0938	see below	30		
B6-11A	94305		4	1205		30	2" 51	
B6-21A		3/2/		1208		3(
BG-2IADup	35132	3/2/	15	1208		30	5 6	
B6-155	36415	3/2/	15	1635		3,	0 54	
16-255	33398 :	3/2/	15	1508		30	-	41
B6-255000	12379	3/2/	15	1508	_ V	3	0 6"	
86-AA-3'	35142	3/3/	15	0945	Hold For Analy	sia 30	5" 5"	
					1			
	10		j		,			
3/3/15:1100	Med bly: (signatur	82 3	ate/Time		Notes: Analy 2	Ev: A	cetone	e, Benzene,
1.0	ived by: (signatur	re) Da	ate/Time	9	EU, Iber	a seve, l	suprep.	y Alcohol, luene, Report to MOL
	ived by: (signatur	re) Dat	ite/Time	3	Yylene, an	e Mell	hend.	Report to
Leto Shipped Hearter Air Rail #	THE RESERVE OF THE PARTY OF THE	mp (°C)		Condition.				
Only Fed Ex 7730323214	163 N	A		Errod	Yes / No	(None	J 150	03058
	*			,				

	Project Number:1503058C
	Date:02/03/2015
REVIEW OF VOLATILE ORGA The following guidelines for evaluating volatile organics w	vere created to delineate required validation
actions. This document will assist the reviewer in using producision and in better serving the needs of the data users. The	rofessional judgment to make more informed he sample results were assessed according to
USEPA data validation guidance documents in the follow "Compendium Method TO-15. Determination of Volatile Organical Compension of V	wing order of precedence: QC chiefla from ganic Compounds (VOCs) In Air Collected In
Specially-Prepared Canisters and Analyzed By Gas Ch	nromatography/Mass Spectrometry (GC/MS),
January, 1999, USEPA Hazardous Waste Support Brand Analysis of Ambient Air in Canisters by Method TO-15, (SOI	ch. Validating Air Samples. Volatile Organic D# HW.31 Revision #4 October 2006) The
QC criteria and data validation actions listed on the data rev	iew worksheets are from the primary guidance
document, unless otherwise noted.	
The hardcopied (laboratory name) _EurofinsAir_Toxics reviewed and the quality control and performance data summ	data package received has been
reviewed and the quality control and performance data summ	ialized. The data feview for voos included.
Lab. Project/SDG No.:1503058C	Sample matrix:Air
No. of Samples:7	
Trip blank No.:	
Field blank No.:	
Equipment blank No.:	
Field duplicate No.:B6-2IA/B6-2IA_Dup;_B6-2SS/B6	-2SS_Dup
X Data Completeness	X Laboratory Control Spikes
X Holding Times	X Field Duplicates
X GC/MS Tuning	X Calibrations
X Internal Standard Performance	X Compound Identifications
XBlanks	X Compound Quantitation X Quantitation Limits
X Surrogate Recoveries N/A_ Matrix Spike/Matrix Spike Duplicate	A Quantitation Limits
Overall Comments:_Methanol_by_method_TO-15	
Definition of Qualifiers:	
J- Estimated results	
U- Compound not detected R- Rejected data	
UJ- Estimated nondetect	
Roll Mit	
Reviewer: / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Date VJ/2V/2V17	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
	<i>X</i>	
	<u> </u>	
	<u>\</u>	
		\
		<u> </u>
	100	<u> </u>
Water and the same		<u> </u>

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
,	All samples analyzed w	ithin the recommended	l method	holding time

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): N/A – summa canisters

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

		0-	All criteria were metX
		Cr	iteria were not met see below
GC/MS TUNING			
The assessment of standard tuning QC		o determine if the sample instru	umentation is within the
XThe BFB p	erformance results were	e reviewed and found to be within	the specified criteria.
XBFB tuning	was performed for ever	ry 24 hours of sample analysis.	
lf no, use professi qualified or rejected		nine whether the associated da	ta should be accepted,
List	the	samples	affected:
		4	

If mass calibration is in error, all associated data are rejected.

4

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	_03/05/15
Dates of continuing calibration:	03/05/15
Instrument ID numbers:MS	SD-14
Matrix/Level:/	\ir/low

DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#		RFs, %RSD, %D, r		AFFECTED
			Initial and continuing comes meet method specification	alibrations meet method sic requirements.	pecific requirements.
	ļ		MARINE TO THE		
					ACCIONATION CONTRACTOR OF THE

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be \leq 15 % regardless of method requirements for CCC.

All %Ds must be < 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were metX
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method	d_blank_meeth	 _method_specif	fic_criteria	
Summa_ca	anisters_met_cl	eaning_certifica		
Field/Equipmen	t/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ Matrix	COMPOUND	CONCENTRATION UNITS
No_field/trip/equ	uipment_blanks	_analyzed_with	_this_data_package	

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
				254	

	*				

All criteria were metX	
Criteria were not met	
and/or see below	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID

SURROGATE COMPOUND

ACTION

1,2-DICHLOROETHANEd4

Toluene- 4-BFB

d8

_Surrogate_recoveries_within_laboratory_control_limits					
QC Limits* (Air)					
LL_to_UL70to_130	_70to_13070to_130				

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which d Sample ID:			o not meet the criteria. Matrix/Level:			
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
	are_not_required_as				ike_used_to_assess	
	s are laboratory in-ho	•		•	r limit, UL = upper limit.	

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met
Criteria were not met
and/or see below N/A_

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Level/Unit:		
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
				······································	
					-
	<u>*************************************</u>				
					, <u></u>

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met
Criteria were not met
and/or see below N/A

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT
LCS/LCSE	D_not_required			· · · · · · · · · · · · · · · · · · ·

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

			All criteria were met Criteria were not met and/or see belowN/A
IX.	LABORATOR	Y DUPLICATE PRECISION	
	Sample IDs: Sample IDs:	_B6-2IA/B6-2IA_Dup _B6-2SS/B6-2SS_Dup	Matrix:Air Matrix:Air

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
1					
	RPD v	vithin the met	hod performand	e criteria	

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metX
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within \pm 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
	tandard_area_and_reration_standards			_control_limits_for_	both_samples
			· · · · · · · · · · · · · · · · · · ·	<u>,</u>	

Actions:

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > + 40%
Positive results	J	J
Nondetected results	R	ACCEPT

2. If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were metX
Criteria were not met
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Calibration check 03/05/15

Methanol

RF = 25.10039

[] = (243204)(400)/(77514)(25.10039)

= 50.0 ppbv OK

All criteria were met _X_
Criteria were not met
and/or see below

XII. QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION
Samples dilute	d by a factor of less than	2.50
•		

Percent Solids	
List samples which have ≤ 50 % solids	
	200
	333

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)

	Project Number:1503058H
	Date:02/03/2015
	1110 D10K10E
REVIEW OF VOLATILE ORG	
The following guidelines for evaluating volatile organics v	were created to delineate required validation
actions. This document will assist the reviewer in using p	to expelle regulte were assessed according to
lecision and in better serving the needs of the data users. T JSEPA data validation guidance documents in the follo	tie sample results were assessed according to
OsePA data validation guidance documents in the folioon Compendium Method TO-15. Determination of Volatile Or	apple Compounds (VOCs) In Air Collected in
Specially-Prepared Canisters and Analyzed By Gas Cl	promatography/Mass Spectrometry (GC/MS).
lanuary, 1999"; USEPA Hazardous Waste Support Bran	ch Validating Air Samples Volatile Organic
Analysis of Ambient Air in Canisters by Method TO-15, (SO	P # HW-31, Revision #4, October, 2006). The
QC criteria and data validation actions listed on the data rev	riew worksheets are from the primary guidance
document, unless otherwise noted.	, , ,
The hardcopied (laboratory name) _EurofinsAir_Toxics	data package received has been
eviewed and the quality control and performance data summ	narized. The data review for VOCs included:
• • • •	
_ab. Project/SDG No.:1503058H	Sample matrix:Air
No. of Samples:4	
Trip blank No.:	
Field blank No.:	
=quipment diank ivo.:	
Field duplicate No.:B6-2IA/B6-2IA_Dup	
V Deta Osmalatanasa	V Laboratory Control Chikon
X Data Completeness	X Laboratory Control Spikes
X Holding Times	X Field Duplicates
X GC/MS Tuning	X Calibrations
X Internal Standard Performance	X Compound Identifications
X Blanks	X Compound Quantitation
X Surrogate Recoveries	X Quantitation Limits
N/A_ Matrix Spike/Matrix Spike Duplicate	
0 110 1 0 D in a lib and TO 45	
Overall Comments:_2-Propanol_by_method_TO-15	
Definition of Qualifiers:	
J- Estimated results	
U- Compound not detected	
R- Rejected data	
UJ- Estimated nondetect	
1 1 11	
// // // V// /	
Kall N. A.	
Reviewer: / Wax Manx	-
Date: 03/20/2015	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
<u> </u>		, , , , , , , , , , , , , , , , , , , ,
	\	
		
	<u></u>	
		A.
		\
		<u> </u>

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
Δ	Il samples analyzed w	 vithin the recommended	1 method	holding time
	in Samples analyzed H		11160100	nowing unic
			-	
	_			

<u>Criteria</u>

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples -7 days from sample collection for unpreserved samples, 4° C, no air bubbles. Soil samples -7 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): N/A – summa canisters

Actions

chica i se la constitución

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

		(All criteria were metX Criteria were not met see below
GC/MS TUNING			
The assessment of th standard tuning QC lim	_	s to determine if the sample inst	rumentation is within the
_X The BFB perfo	ormance results we	ere reviewed and found to be with	in the specified criteria.
XBFB tuning wa	as performed for ev	very 24 hours of sample analysis.	
If no, use professiona qualified or rejected.	l judgment to det	ermine whether the associated d	ata should be accepted,
List	the	samples	affected:
If mass calibration is in	error, all associat	ed data are rejected.	_

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	_02/17/15
Dates of continuing calibration:	03/09/15
Instrument ID numbers:MS	SD-P
Matrix/Level:A	vir/low

DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES				
	ID#		RFs, %RSD, %D, r		AFFECTED				
	Initial and continuing calibrations meet method specific requirements. Initial calibration retention								
times mee	t method	specific	requirements.						

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be \leq 15 % regardless of method requirements for CCC.

All %Ds must be $\leq 30\%$ regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were metX
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method	d_blank_meeth	 _method_speci	fic_criteria	
Summa_ca	-			
Field/Equipmen		And different		
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
No_field/trip/equ	uipment_blanks	_analyzed_with	n_this_data_package	

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					- 18 CANA
				3	
	The second secon				
(-					

All criteria were met _X
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID	SURRO	SURROGATE COMPOUND				
	1,2-DICHLOROETHANE- d4	Toluene- d8	4-BFB			
_Surrogate_rec	overies_within_laboratory_con	ntrol_limits				
						
QC Limits* (Air)						
LL_to_U	IL70to_130	_70to_13	3070to_130			

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

	PD of the compounds				**************************************	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
	_are_not_required_as	•		•	ike_used_to_assess	;
* QC limit	s are laboratory in-ho	ouse perfo	mance o	criteria, LL = lowe	r limit, UL = upper lir	nit.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

If QC limits are not available, use limits of 70 - 130 %.

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Level/Unit:				
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION		
				<u> </u>			
***************************************	***************************************						

					······································		
		<u> </u>					
	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were metX
Criteria were not met
and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

FC2 ID	COMPOUND	% K	QC LIMI
)_(Blank_spike)_ _control_limits	_analyzed_in_this_data_package	e,_recoveries_a 	nd_RPD_within

- QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

				All criteria were met Criteria were not met and/or see belowN/A
IX.	LABORATOR	DUPLICATE PRECISION		
	Sample IDs:	_B6-2IA/B6-2IA_Dup	Matrix:	Air

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD ± 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
RPI) within the	e method per	formance criteri	a for all a	analytes.
					,

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria	were	met	Χ
--------------	------	-----	---

Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within \pm 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
	tandard_area_and_reration_standards	etention_times_	within_laboratory	_control_limits_for_	both_samples

Actions:					

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > + 40%
Positive results	J	J
Nondetected results	R	ACCEPT

2. If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were metX
Criteria were not met
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

1503058H-02A

2-Propanol

RF = 2.86097

[] = (230086)(25.0)/(94885)(2.86097)

= 153.983 ppbv OK

All criteria were metX
Criteria were not met
and/or see below

XII. QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION
B6-1IA	10.4	High level of target species
B6-2IA	6.37	High level of target species
B6-2IA Dup	6.53	High level of target species
•		
7.3		

Percent Solids
List samples which have ≤ 50 % solids

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R) $\,$

Danie REVIEW OF VOLATILE ORGANI The following guidelines for evaluating volatile organics were	created to delineate required validations sional judgment to make more informed
	created to delineate required validations sional judgment to make more informed
actions. This document will assist the reviewer in using profest decision and in better serving the needs of the data users. The subset of JSEPA data validation guidance documents in the following ord D-1946 method for measuring permanent gases and light hydroxymples using gas chromatography (GC) and a thermal conductive detection (FID). Validating Air Samples. Volatile Organic Analyst (CO-15, (SOP # HW-31. Revision #4. October, 2006). The QC could be data review worksheets are from the primary guidance documents the hardcopied (laboratory name) _Eurofins	drocarbons in refinery and other source vity detector (TCD) and/or flame ionizations of Ambient Air in Canisters by Methoriteria and data validation actions listed of the ent, unless otherwise noted. data package received has been
_ab. Project/SDG No.:1503058F	Sample matrix:Air
No. of Samples:7	Cample MauxAll
X Holding Times	_X Field Duplicates
N/A_GC/MS Tuning	_X Calibrations
	_X Compound Identifications
	_X Compound Quantitation
——————————————————————————————————————	_X Quantitation Limits
N/A_Matrix Spike/Matrix Spike Duplicate	
Overall Comments:_Methane_by_ASTM_method_D-1946_((modified)
Definition of Qualifiers: J- Estimated results J- Compound not detected R- Rejected data JJ- Estimated nondetect	
Reviewer:	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
<u> </u>		
N.		
<u> </u>		
<u> </u>		
N. C.		
		<u> </u>

	<u> </u>	
	\	
		\
		<u> </u>
		<u>\</u>
		<u> </u>

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
	All a comba a comba a divi	:4h: - 4h	1	L -1.2
<i></i>	All samples analyzed w	vitnin the recommended	metnoa_	nolaing time

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples -7 days from sample collection for unpreserved samples, 4°C , no air bubbles.

Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): N/A – summa canisters

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

			Il criteria were metN/A ere not met see below
GC/MS TUNING			
The assessment standard tuning (determine if the sample instrumen	tation is within the
N/A_ The BFB	performance results were	reviewed and found to be within the	specified criteria.
N/A_ BFB tuni	ng was performed for every	24 hours of sample analysis.	
If no, use profes qualified or reject		ine whether the associated data sl	nould be accepted,
List	the	samples	affected:

If mass calibration is in error, all associated data are rejected.

Note: Samples analyzed using GC with either TCD or FID detection.

All criteria were met _X
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	05/08/14
Dates of continuing calibra	tion:_03/05/15
Instrument ID numbers:	GC-9
Matrix/Level:	Air/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
			rations meet method sprequirements.	pecific requirements. Initi	al calibration retention
		· · · · · · · · · · · · · · · · · · ·			

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be < 15 % regardless of method requirements for CCC.

All %Ds must be ≤ 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were metX
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method	d_blank_meeth_	 _method_speci	fic_criteria	
Summa_c	anisters_met_cl	eaning_certifica	ation_criteria	
Field/Equipmen	t/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
No_field/trip/eq	uipment_blanks	_analyzed_with	n_this_data_package	

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					""
	<u> </u>				
To see					

All criteria were met _	_N/A
Criteria were not met	
and/or see below	

ACTION

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

SURROGATE COMPOUND

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

_Surrogate_standard	ds_not_requ	iired_by_the_me	thod		

QC Limits* (Air) LL_to_UL	to	to	to	to	

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

SAMPLE ID

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Level:		
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
	_not_required_as_part		1-method	I_D-1946;_blanl	<_spike_used_to_assess

* If QC limits are not available, use limits of 70 – 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

All criteria were met
Criteria were not met
and/or see below N/A

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Level/Unit:			
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION	
- SP-						

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were metX
Criteria were not met
and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT
LCS/L	CSD_(Blank_spik	ce)_analyzed_in_this_data	_package;_recoveries_	and_RPD
within_	_laboratory_contr	ol_limits		
			· · · · · · · · · · · · · · · · · · ·	

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metX Criteria were not met and/or see below
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample ID_B6-2IA/B6-2IA_Dup Sample ID_B6-2SS/B6-2SS_Dup	Matrix:Air Matrix:Air

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
RPD for field duplicates	within la		trol limits. RPD tatory control lim		ratory duplicate (LCS/LCSD)

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metN/A
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within \pm 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
	tandard_not_required	-		ntified_by_externa	l_standard
···					
				· · · · · · · · · · · · · · · · · · ·	
					
					,, , , ,, ,, , , , , , , , , , , , , ,
Actions:					

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > + 40%
Positive results	J	J
Nondetected results	R	ACCEPT

2. If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were metX
Criteria were not met
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

1503058F-01A

Methane

RF = 159808871

[] = (17549)/(159808871)

= 0.00011 % OK

All criteria were metX
Criteria were not met
and/or see below

XII.	ΩL	IANTI	TAT	ION.	LIMITS	3
/\II.	w	// (1 4 1 1	$I \cap I$			_

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION					
All samples dilu	ited by a factor of less th						
		I					
	*						

Pe	rcent S	olids				
Lis	t samp	les which	have <u><</u> 50	% solids		
	·		_			
						·

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)